首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3200篇
  免费   6篇
  国内免费   5篇
航空   1192篇
航天技术   1038篇
综合类   19篇
航天   962篇
  2022年   15篇
  2021年   37篇
  2019年   16篇
  2018年   127篇
  2017年   102篇
  2016年   115篇
  2015年   41篇
  2014年   111篇
  2013年   134篇
  2012年   118篇
  2011年   158篇
  2010年   127篇
  2009年   192篇
  2008年   190篇
  2007年   122篇
  2006年   74篇
  2005年   101篇
  2004年   94篇
  2003年   106篇
  2002年   83篇
  2001年   113篇
  2000年   36篇
  1999年   53篇
  1998年   61篇
  1997年   42篇
  1996年   43篇
  1995年   80篇
  1994年   61篇
  1993年   34篇
  1992年   45篇
  1991年   10篇
  1990年   19篇
  1989年   41篇
  1988年   11篇
  1987年   17篇
  1986年   16篇
  1985年   70篇
  1984年   56篇
  1983年   48篇
  1982年   42篇
  1981年   82篇
  1980年   25篇
  1979年   16篇
  1978年   14篇
  1977年   17篇
  1976年   13篇
  1975年   13篇
  1974年   11篇
  1972年   13篇
  1971年   11篇
排序方式: 共有3211条查询结果,搜索用时 15 毫秒
91.
A constant false alarm rate (CFAR) detection method which is based on a combination of median and morphological filters (MEMO) is proposed. The MEMO algorithm has robust performance with small CFAR loss, very good behavior at clutter edges and high detection performance in the case of closely spaced narrowband signals (targets). The proposed MEMO method is favourably compared with cell averaging (CA) and ordered statistics (OS) CFAR detectors. The Monte Carlo method is employed to analyze the MEMO-CFAR detector  相似文献   
92.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
93.
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35 across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5 across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
94.
Jurewicz  A.J.G.  Burnett  D.S.  Wiens  R.C.  Friedmann  T.A.  Hays  C.C.  Hohlfelder  R.J.  Nishiizumi  K.  Stone  J.A.  Woolum  D.S.  Becker  R.  Butterworth  A.L.  Campbell  A.J.  Ebihara  M.  Franchi  I.A.  Heber  V.  Hohenberg  C.M.  Humayun  M.  McKeegan  K.D.  McNamara  K.  Meshik  A.  Pepin  R.O.  Schlutter  D.  Wieler  R. 《Space Science Reviews》2003,105(3-4):535-560
Genesis (NASA Discovery Mission #5) is a sample return mission. Collectors comprised of ultra-high purity materials will be exposed to the solar wind and then returned to Earth for laboratory analysis. There is a suite of fifteen types of ultra-pure materials distributed among several locations. Most of the materials are mounted on deployable panels (‘collector arrays’), with some as targets in the focal spot of an electrostatic mirror (the ‘concentrator’). Other materials are strategically placed on the spacecraft as additional targets of opportunity to maximize the area for solar-wind collection. Most of the collection area consists of hexagonal collectors in the arrays; approximately half are silicon, the rest are for solar-wind components not retained and/or not easily measured in silicon. There are a variety of materials both in collector arrays and elsewhere targeted for the analyses of specific solar-wind components. Engineering and science factors drove the selection process. Engineering required testing of physical properties such as the ability to withstand shaking on launch and thermal cycling during deployment. Science constraints included bulk purity, surface and interface cleanliness, retentiveness with respect to individual solar-wind components, and availability. A detailed report of material parameters planned as a resource for choosing materials for study will be published on a Genesis website, and will be updated as additional information is obtained. Some material is already linked to the Genesis plasma data website (genesis.lanl.gov). Genesis should provide a reservoir of materials for allocation to the scientific community throughout the 21st Century. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
95.
Frey  H.U.  Mende  S.B.  Immel  T.J.  Gérard  J.-C.  Hubert  B.  Habraken  S.  Spann  J.  Gladstone  G.R.  Bisikalo  D.V.  Shematovich  V.I. 《Space Science Reviews》2003,109(1-4):255-283
Direct imaging of the magnetosphere by instruments on the IMAGE spacecraft is supplemented by simultaneous observations of the global aurora in three far ultraviolet (FUV) wavelength bands. The purpose of the multi-wavelength imaging is to study the global auroral particle and energy input from the magnetosphere into the atmosphere. This paper describes the method for quantitative interpretation of FUV measurements. The Wide-Band Imaging Camera (WIC) provides broad band ultraviolet images of the aurora with maximum spatial resolution by imaging the nitrogen lines and bands between 140 and 180 nm wavelength. The Spectrographic Imager (SI), a dual wavelength monochromatic instrument, images both Doppler-shifted Lyman-α emissions produced by precipitating protons, in the SI-12 channel and OI 135.6 nm emissions in the SI-13 channel. From the SI-12 Doppler shifted Lyman-α images it is possible to obtain the precipitating proton flux provided assumptions are made regarding the mean energy of the protons. Knowledge of the proton (flux and energy) component allows the calculation of the contribution produced by protons in the WIC and SI-13 instruments. Comparison of the corrected WIC and SI-13 signals provides a measure of the electron mean energy, which can then be used to determine the electron energy flux. To accomplish this, reliable emission modeling and instrument calibrations are required. In-flight calibration using early-type stars was used to validate the pre-flight laboratory calibrations and determine long-term trends in sensitivity. In general, very reasonable agreement is found between in-situ measurements and remote quantitative determinations.  相似文献   
96.
Frequency estimation techniques for high dynamic trajectories   总被引:7,自引:0,他引:7  
A comparison is presented of four different estimation techniques applied to the problem of continuously estimating the rapidly varying parameters of a sinusoidal signal, observed in the presence of additive noise. Frequency estimates are emphasized, although phase and/or frequency rate are also estimated by some of the algorithms. These parameters are related to the velocity, position, and acceleration of the maneuvering receiver or transmitter. Estimated performance at low carrier-to-noise ratios and high dynamics is investigated for the purpose of determining the useful operating range of an approximate maximum likelihood estimator, an extended Kalman filter, a cross-product automatic frequency loop and a phase-locked loop. Numerical simulations are used to evaluate performance while tracking a common trajectory exhibiting high dynamics  相似文献   
97.
Eruptive prominences as sources of magnetic clouds in the solar wind   总被引:2,自引:0,他引:2  
Large amounts of coronal material are propelled outward into interplanetary space by Coronal Mass Ejections (CMEs). Thus one might expect to find evidence for expanding flux ropes in the solar wind as well. To prove this assumption magnetic clouds were analyzed and correlated with H-observations of disappearing filaments. When clouds were found to be directly associated with a disappearing filament, the magnetic structure of the cloud was compared with that of the associated filament. Additionally the expansion of magnetic clouds was examined over a wide range of the heliosphere and compared with the expansion observed for erupting prominences.  相似文献   
98.
Geomagnetic micropulsations and diagnostics of the magnetosphere   总被引:3,自引:0,他引:3  
Plasma oscillations in a wide range of spectrum exist in the magnetosphere. Part of them penetrate the ionosphere and are recorded on the earth's surface. In the range of frequencies from millihertz to several hertz, the so-called micropulsations (ULF) are observed. In the range from hundred of hertz to several kilohertz the low-frequency emissions (VLF) are registered. Both types of emissions contain interesting and important information on the physical parameters of the magnetosphere and on the processes developing in it. The following paper describes the main problems of the diagnostics of the magnetosphere, which are based on the surface observations of micropulsations.In the first part of the paper, a short summary of theoretical conceptions on micropulsations is given. The main part of the paper describes the methods of diagnostics of the location of the boundary of the magnetosphere, of cold-plasma concentration in the outer regions of the magnetosphere, as well as of the energies and fluxes of fast charged particles in the geomagnetic trap. Some experimental results of the diagnostics of the parameters of the magnetosphere are given. Advantages and deficiencies of the existing methods of surface diagnostics are discussed, and the directions of further investigations are traced.  相似文献   
99.
On-Line Computer for Transient Turbine Cascade Instrumentation   总被引:1,自引:0,他引:1  
A 32-channel computer based data acquisition and processing system em has been developed for use with the new type of transient cascade facility at Oxford. This is used for testing turbine blades and nozzle guide vanes at full-scale engine Reynolds and Mach numbers ers with correct wallto-flow temperature ratios. A novel technique for processing transient heat transfer data from thin film surface resistance thermometers has been developed. Measurements of surface ace pressure around blades, and of the upstream turbulence level have been made. The cascade and instrumentation are shown to have advantages both in cost and effectiveness over continuous running cascades.  相似文献   
100.
A magnetohydrodynamic model of the solar wind flow is constructed using a kinematic approach. It is shown that a phenomenological conductivity of the solar wind plasma plays a key role in the forming of the interplanetary magnetic field (IMF) component normal to the ecliptic plane. This component is mostly important for the magnetospheric dynamics which is controlled by the solar wind electric field. A simple analytical solution for the problem of the solar wind flow past the magnetosphere is presented. In this approach the magnetopause and the Earth's bow shock are approximated by the paraboloids of revolution. Superposition of the effects of the bulk solar wind plasma motion and the magnetic field diffusion results in an incomplete screening of the IMF by the magnetopause. It is shown that the normal to the magnetopause component of the solar wind magnetic field and the tangential component of the electric field penetrated into the magnetosphere are determined by the quarter square of the magnetic Reynolds number. In final, a dynamic model of the magnetospheric magnetic field is constructed. This model can describe the magnetosphere in the course of the severe magnetic storm. The conditions under which the magnetospheric magnetic flux structure is unstable and can drive the magnetospheric substorm are discussed. The model calculations are compared with the observational data for September 24–26, 1998 magnetic storm (Dst min=−205 nT) and substorm occurred at 02:30 UT on January 10, 1997. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号